2)第二百八十五章 陈氏定理_我的老师是学霸
字体:      护眼 关灯
上一章 目录 下一章
  脑海里。

  顾律现在需要做的,就是将其在众人面前呈现。

  会议室内,数台摄影机同时对准顾律,拍摄下顾律证明的全过程。

  对数学界来说,这是一份注定的宝贵影像资料。

  …………

  “……我们首先命P(1,2)为适合下列条件的的素数p的个数,x——p=p1或x——p=p1p2。其中,p1,p2,p3都是素数。”

  “接下来,我们用x表示一充分大的偶数,命Cx=Π(p>2)p-1/p-2Π(p>2)(1-1/(p-1)^2)。对于任意给定的偶数h,以及充分大的xp,用xh(1,2)表示满足下面条件的素数p的个数:p≤x,p+h=p1或p+h=p2p3。在这里,p1,p2,p3同样代表素数。”

  “……之后,我们便会得到两个定理,分别是:

  定理一:【(1,2)及Px(1,2)≥0.67xCx/(logx)^2.】

  定理二:对于任意偶数h,都存在无限多个素数p,使得p+h的素因子的个数不超过2个以及xh(1,2)≥0.67xCx/(logx)^2.】”

  顾律讲了已经有五分钟的时间。

  四块黑板,其中有将近两块黑板已经快被顾律所写的公式占满。

  而顾律采用的证明等差素数猜想的方法,在随着不断的顾律的阐述已经初见端倪。

  尤其是康斯坦丁,可以说看的最为透彻。

  顾律的证明过程,确实是使用了陈氏定理。

  但和康斯坦丁猜测的不同,顾律引用的并非是陈氏定理的具体内容,而是陈院士当年在推导陈氏定理过程中,使用的一些方法和理论。

  比如说,顾律在构造p1,p2,p3这三个素数时,和陈院士当年的构造方式简直是如出一辙。

  还有偶数的设定以及两个关键定理的推导,字里行间都流淌着陈院士当年那篇论文的影子。

  即便康斯坦丁对顾律的观感并不好,但亦不得不承认,顾律这个操作足以被称作是神来之笔。

  不只是康斯坦丁,会议室内其余看懂的数学家亦是惊呼不已。

  这是什么天马行空般的想法!

  众人不禁赞叹。

  虽然想法天马行空,但不得不承认,顾律的这个操作,可以说是没有任何阻碍的将等差素数猜想和陈氏定理联系起来。

  让众人看到了成功证明等差素数猜想的希望。

  “但,只是有这些的话,明显还不够啊!”康斯坦丁望着黑板上顾律的推导步骤,轻轻喃喃自语。

  康斯坦丁要比众人看的更加透彻一些。

  顾律这一下的神来之笔,虽说足够的惊艳,但还不足以成为压到等差素数猜想的最后一根稻草。

  要顾律真的只有这点本事的话,那今天恐怕就到此为止了。

  …………

  顾律会到此为止吗?

  显然并不会。

  很显然的一点是,顾律从来不会打没准备的仗。

  顾律既然选择上台汇报,那就说明对自己的证明过程,有着十足的信心和把握。

  只见顾律微微一笑,拉下一块空白的黑板,一边写一边阐述。

  “接下来,我们还需要构造几个引理。”

  “引理一:假设y≥0,而[logx]表示logx的整数部分,x>1,φ(y)=1/2πi∫(2+i∞,2-i∞)ydw/w(1+w/(logx)^l)^[logx]+1.”

  “引理二:令c(α)=e^2πiα,S(α)=∑ane(na),Z=……”

  “引理三:……”

  三个引理构造完毕。

  顾律笑着开口,“下面,我们需要再引入一个公式,与这三个引理相结合。”

  说完,顾律在黑板上写下一串公式。

  ∑(m1^2+m2^2+m3^2≤x)1=4π/3*x^1.5+O(x^2/3)!

  这个公式是……

  球内整点问题的素数分布公式!

  不少数学家望着这个熟悉的公式,瞳孔猛地一缩。

  请收藏:https://m.xiaoshuomvp.com

(温馨提示:请关闭畅读或阅读模式,否则内容无法正常显示)

上一章 目录 下一章